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Abstract: - In the paper some fuzzy classification algorithms based upon a nearest neighbor decision rule are 
considered in terms of the pattern recognition algorithms which are based on the computation of estimates (the 
so-called AEC model). It is shown that the fuzzy K nearest neighbor algorithm can be assigned to the AEC 
class.  In turn, it is found that some standard AEC algorithms, which depend on a number of numerical 
parameters, can be used as fuzzy classification algorithms. Yet among them there exist algorithms extremal 
with respect to these parameters. Such algorithms provide maximum values of the associated performance 
measures. 
 
Key-Words: - Pattern recognition, performance measures, heuristic algorithms, fuzzy set theory 
 
Received: May 13, 2020. Revised: July 2, 2020. Re-revised: July 24, 2020. Accepted: July 31, 2020. Published: August 23, 2020.
 
 
1 Introduction 
In recent decades, a growing number of pattern 
recognition methods, which rely on the fuzzy set 
theory, have emerged [1]. For solving some 
computer vision tasks, e. g. for the processing of 
blurred images, the use of such methods is well 
justified. Also, in many pattern recognition methods 
the reference classification is ambiguous, so the 
fuzzy approach can be applied here as well. 

The appearance of fuzzy algorithms has raised 
some natural tasks, e. g. to study their scope, to find 
an optimal fuzzy algorithm for solving the same 
problem, or to compare the fuzzy methods with their 
non-fuzzy counterparts. These tasks are partly 
reflected in our software system named PICASSO, 
designed for the purpose of empirical supervised 
evaluation of computer vision algorithms [2]-[4], 
[10]. The system performs a comparison between a 
processed image (algorithm’s output) against a 
reference image which is often referred to as a 
ground-truth, by using some quantitative evaluation 
criteria – similarity measures. The current version of 
PICASSO, alongside with some amount of fuzzy 
ground truth images (as well as the methods for 
their generation) contains some fuzzy similarity 
measures, applicable to both fuzzy and non-fuzzy 
algorithms (see [3]-[4] for details).  

In general, our approach to evaluation of the 
fuzzy algorithms corresponds to the ideas expressed 
by Yu. M. Zhuravlev in 1970s about the study of 
pattern recognition algorithms [5]-[7]. For example, 
as noted in [5], “A great number of various methods 
and algorithms emerged at the early stage in the 

evolution of recognition theory and practice and 
were applied to practical problems without any 
serious mathematical basis. As is customary in all 
experimental sciences, the methods were verified by 
a direct test – success or failure in tackling real 
problems. Many of them have stood this test and are 
used despite the lack of mathematical justification. 
… So, having recognized the existence and practical 
usefulness of ill-defined procedures of solving 
poorly formalized problems as reality, we face the 
task of studying the very set of these procedures 
using rigorous mathematical methods.” It may be 
established as a fact, that to date the share of 
practically efficient, though theoretically unfounded 
algorithms have risen substantially. For instance, 
nowadays many pattern recognition methods rely on 
the use of neural network models. Yet, all of these 
methods inherit the open issues of the neural 
network theory: completeness of the training 
samples, avoidance of deadlocks during the network 
training, etc. Thus, the problem of studying these 
“non-rigorous algorithms using rigorous 
mathematical methods” remains to be actual. 

As part of a study of heuristic pattern recognition 
algorithms, the model of the recognition algorithms 
based on estimate calculations (later referred to as 
AEC1 model) was introduced in [6]. This model 
unified several known by that time principles and 
procedures of recognition. To date, this model and 
its generalizations were considered in many papers 
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(see [8] and references thereafter).  In particular, it 
found its place in the Descriptive Image Analysis 
[9]. Below we describe the main principles of the 
classical version of this model. 

The purpose of this paper is to study connections 
between the fuzzy classification algorithms, where 
the grade of membership of an object in some class 
depends on the number of neighboring training 
sample objects from the same class, with the AEC 
model. Such study may be useful for the further 
development of the fuzzy recognition algorithms 
and for extending the “fuzzy” component of the 
theory of heuristic algorithms. 

The paper is organized as follows. Section 1 
mainly contains a description of a known fuzzy K- 

nearest neighbor algorithm.  Brief information on 
the classical recognition algorithms based on 
estimate calculations is contained in the Section 2. 
The sections to follow deal with comparison of the 
nearest neighbor algorithms with the AEC model, 
numerical experiments and discussion of results. 
 
 
2 Fuzzy Nearest Neighbor Algorithms 
First we recall some basic notions of the fuzzy sets 
theory. Let X be a non-empty set. A fuzzy set C in X  
is a pair  <X ,fC> , where fC  is a  mapping from X 
into [0, 1]. The value fC(x) at x  X is called the 
grade of membership of x to C, and the function fC is 
called the fuzzy set membership function. A fuzzy 
set is nonempty if for at least one x  X ,  fC (x)>0 .  
Note that ordinary (crisp) subsets M of X are 
covered by the fuzzy set approach if we view them 
as standard characteristic functions 1M : X  [0,1] . 
It means that, if we have an object x  M,   then   
fM(x)=1 and fM(x)=0  for x  M. 

Definition 1. A fuzzy classification F of X : 

,    :  [0,1],

                                      1,...,

 :

;

 
1 N mC C C< X, f ,…., f >

m N

F f X 




 

is called the collection of N fuzzy classes  
:

mm CC < X, f  , satisfying the condition 
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where 
mCf is a membership function of the class 

Cm. One can easily see that an ordinary 
classification of X (its representation as a union of N 
disjoint subsets) is also its fuzzy classification 

(every element of X belongs only to one class, and 
the membership function is the characteristic 
function of this class). From now on assume that X 

is finite. 
We now turn to a known K- fuzzy nearest 

neighbour algorithm (Google search gives over 
1900 matches for references to the original paper 
[10] where it was introduced; we mention here its 
recent applications to big data analysis [11]-[12]). 
The essence of the algorithm is as follows. Suppose 
we have a set X containing objects from l classes. 
Each object is identified with its feature vector of 
fixed length. Let MRX  be the training set 
containing the objects for which the class 
membership is known in advance, such that all l 

classes are represented. On the first stage of the 
algorithm, the objects of MR are enumerated, and for 
each object x  MR its membership in each class is 
assigned according to the equation: 

1
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                                  j =1,...,l;                             (2) 
 
where i is the number of x in MR, j is the class 
number, K1 is a certain fixed number of the nearest 
neighbors (the neighborship function is defined 
according to a certain (e. g. Euclidian) metric 
applied to the feature vectors of the objects. As we 
see, the more neighbors of x are of the same class, 
the higher is its grade of membership in this class (it 
equals to 1 for K1 nearest neighbors). 

 Then, suppose we have a test set MKX. For 
each y  MK, we find its K nearest neighbors (K is 
not necessarily equal to K1) and assign its 
membership in each of the l classes by the formula: 

2
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           (3) 

where P is a fixed natural number (e. g. P=2) and ||.|| 
is the norm induced by the above-mentioned metric. 
It is assumed that y belongs to the class with the 
highest membership value. As we see, this 
algorithm depends on the parameters K, K1 and P. 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2020.19.22 Andrey Osipov

E-ISSN: 2224-2678 169 Volume 19, 2020



The latter parameter determines how heavily the 
distance is weighted when calculating each 
neighbor’s contribution to the membership value. 
As P approaches one, the closer neighbors are 
weighted far more heavily than those farther away; 
as P increases, the neighboring points are more 
evenly weighted. We denote this algorithm as FK. 

In spite of a fairly good results obtained in some 
cases (we will dwell on this below), in [10] were 
also mentioned some shortages of FK. For example, 
assume that an object y is assigned 0.53 membership 
in class one, 0.45 membership in class two and 0.02 
membership in class three. According to FK, y 

belongs to class one. However, from the common 
sense viewpoint, we should be hesitant to assign the 
object y based on these results. We can only feel 
confident that it does not belong to class three. It 
exhibits a high degree of membership in both 
classes one and two, so a further examination of y is 
highly desirable. 

In particular applications, e. g. in the face 
recognition, usually only the first stage of this 
algorithm (the calculation of µij by formula (2)) is 
used. These quantities are used for the calculation of 
between-class scatter matrix (empirical covariance 
matrix) of the training set. It is believed (although 
not strictly proven) that this matrix is more balanced 
than if calculated without using them.  Further on, 
various versions of the principle component analysis 
method are applied (see [4], [13], [14] for details).  

In addition to the above-considered method, a 
fuzzy version of the nearest prototype algorithm was 
also considered in [10]. In this algorithm, first we 
select a set of l prototypes (Z1,…,Zl), ZjMR, 
representing all l classes. Then for each y  MK we 
calculate its grade of membership in each class by 
the formula: 

2
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(4) 

As we can see, the closer is the object y to the class 
prototype, the higher is its membership value in this 
class. The difference between (4) and (3) is that 
membership in each class is assigned based only on 
the distances from the prototypes of the classes. 
This is because the prototypes should naturally be 
assigned complete memberships in their own class. 

Note that both of the above algorithms follow the 
same scheme: first, from the object’s feature vector 

we calculate its membership values in each class. 
Then, based on these values, we decide to which 
class the object belongs. In other words, we apply a 
decision rule based on the highest membership 
value that the object belongs to a certain class. 

 
 

3 On the Algorithms of Estimate 

Calculation 
Considering the AEC algorithms, we first note that a 
principle of partial precedence underlines their 
working. The proximity between the parts of the 
feature sets of the objects already classified and the 
object presented for recognition is analyzed. The 
proximity is a partial precedent estimated 
numerically according to some predefined rule. A 
set of proximity measures yields a general 
quantitative estimate of an object to be recognized 
for a class (or, in other words, we get a membership 
value in this class). 

Now consider the classical AEC model 
introduced in [5]. Denote an algorithm of this model 
as A. Assume X is a given finite set of objects which 
belong to l classes; we denote the latter as K1,…,Kl. 
Let  MRX and MKX be the training (or reference) 
and the test sets respectively. Assume that the set 
MR of size m contains m1 objects of class K1, m2 
objects of class K2,…, ml objects of class Kl, so all l 
classes are represented in the training set. Each 
element of X is identified with its vector feature set 
of length n. The aim is to classify each element of 
MK as one of l classes. 

For  a fixed k {1,…,n}, denote as {Ωk} the set of 
all subsets of {1,2,…,n} of cardinality k. The 
elements Ωk  {Ωk}, Ωk = {r1,…, rk} are called the 
reference (or support) subsets of AEC model. Also, 
let (.,.) be a certain metric, and ε1,…,εn – some 
positive numbers (threshold values). 

On the initial stage of the algorithm A, a table 
containing representatives of all the classes is 
formed from the elements of MR (their feature 
vectors). Namely, its first m1 rows contain the 
arbitrary enumerated objects S1,...,Sm1 from class K1, 
then follow m2 rows containing the objects 
Sm1+1,...,Sm2 from class K2, etc. It is denoted as Tn,m,l. 

After that, for an arbitrary Ωk  {Ωk}, a reduced 
table Tn,m,l( Ωk) is constructed  from Tn,m,l by keeping 
the columns number r1,…, rk  and removing the other 
ones. Denote its rows as Si(Ωk),i=1,…m. Similarly, 
for an object S  MK and its feature set (1,…,k), a 
reduced feature set S(Ωk) =(r1,…,rk) is built. 

Then, for each i the distances in terms of the 
metric (.,.), between the coordinates of 
Si(Ωk)=(αr1,…,αrk) and S(Ωk) are calculated. Let fn 
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be the number of unfulfilled inequalities of the 
system ( αr1, r1)  εr1,…, ( αrk, rk)  εrk . The 
objects  S and Si are called close in Ωk, if for a fixed 
ε  {0,1,…,k},  fn ≤ ε. Denote as {Si}j the set of 
rows of Tn,m,l close to S in Ωk which belong to the 
class Kj, j=1,…,l.  

Further on, the quantities γ(S1), …, γ(Sm) are 
introduced into consideration (typically they are 
identical for the objects of the same class). Set 

{ }

Г ( ) γ( ),
k

j
i i

j

i

S S

S S



   

and 
             

{ }
Г ( ) = Г ( ),  1,..., . 

k

k k

j

j S S j l

  

   (5) 

The values Γj(S) are called the estimates of the 
classes Kj. They indicate the proximity of S to the 
elements of Kj (in other words, Γj(S) is a vote in 
favor of Kj). Given S=(α1,…,αn) and Si=(1,…,n), 
let r(S,Si) be the number of fulfilled inequalities of 
the system ( α1, 1)  ε1,…, ( αn, n)  εn; 

(obviously, 0≤ r(S,Si)≤n). There exists a formula for 
calculation of Γj(S), deductible from combinatorial 
arguments (see [7], Theorem 1): 

    
1
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( , ) ( , )
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Г ( )  ,
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i i
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m

k t t

j i r S S n r S S

i m t

S C C
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

  

          (6) 

where m0=0, γi = γ(Si); 0P

NC   for P>N. As a result 
of above actions, the feature set (α1,…,αn) of S 

transforms into the set (Γ1(S), Γ2(S),..., Γl(S)). 
Assume that the test set MK contains q elements 
S1,...,Sq. Then, the above-considered operations can 
be interpreted as transformation of the matrix I of 
size ql which rows are the feature sets of S1,...,Sq 
respectively: 

11 1
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  ...  
(S ,...,S )      ...  ,

  ...  
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q qn
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into the matrix of estimates 
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l
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q qn
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 
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where Гpj = Гj(Sp), p=1,...,q  of size ql. An operator 
RA transforming I into Γ is called a recognition 
operator.  

After the calculation of matrix Γ, the next step of 
the algorithm A is the classification itself, performed 
by using a fixed decision rule rA. Here is its typical 
example (see [5]-[8] for more details): let Δ1 and Δ2 
be given positive numbers, 0< Δ21. Then the 
object S is assigned to the j-th class if 

1) Г ( )  Г ( )       j i 1S S , j i;     

2) 

1

Г
    .

Г

j

2l

i

i

( S )
, j = 1…l

( S )


 


 

If 1) and 2) are not fulfilled simultaneously for all j 
(in particular, when Γj(S)=0 for all j) then the 
algorithm refuses to classify S.  It can be said that rA 

is an operator which transforms the matrix Γ (6) into 
the classification matrix ClA with elements from the 
set {0,1,Na} where 1 means that the object of the 
test set is assigned to the corresponding class, 0 – if 
not assigned, Na means refusal to classify the 
object. From the condition 1) follows that in the 
case of such rA, this matrix contains at most one 1s 
in each row. Thus, each algorithm A of AEC model 
is a composition of a recognition operator and a 
decision rule: 

                         A AA r R .                   (8) 
The decision rule defined by 1)-2) is relatively 

simple and corresponds to the classical version of 
this model.  The combinatorial formula (6) for 
calculation of Гj(S) is also typical for the classical 
model; in more complicated cases, e. g. for the 
multilevel object recognition performed by AEC 
algorithms, see [8]. 

As we see, the algorithms A have two 
characteristic features. First, for a fixed k, 1≤k≤n all 
the feature subsets with size k are taken into 
consideration while calculating Гj(S) by (5)-(6). 
Second, the importance of each class (and even of 
each object of the reference set) for the recognition 
is taken into account via the weights γi. 

Also, in [5]-[7] the efficiency of recognition 
algorithms expressed in terms of some quality 
functionals (measures), was studied. Namely, 
assume that for each object of MK it is known in 
advance, to which of the classes K1,K2…,Kl it  
belongs. Set MK  Kj = Kj

', j=1,...,l. Given algorithm 
A, each Kj

' is matched to its partition Kjp
', p=0,...,l 

into disjoint sets. For p>0, the set Kjp
' consists of the 

objects of Kj assigned to the class Kp by the 
algorithm A, and Kj0

' consists of non-classified 
objects. Then, a typical quality measure of A is 
defined as 
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1

1 l
'

A jj

jK

( K ),
( M ) 
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

           (9) 

 where μ(.) is a certain measure on a set, e.g. its 
number of elements. In the latter case 0

A  is called 
the overall sensitivity of A. This is a standard 
statistical performance measure of classification 
algorithms which evaluates the amount of correctly 
classified objects (see [2], [4], [15]). Given the 
weight coefficients κ1,…,κl; 0. κ j 1, 
characterizing the “importance” of each class, the 
above formula can be modified: 

               1

1

1 l
'

A j jj

jK

( K ).
( M ) 

   


            (10) 

 

Also, assume that the quantities νij, 0.νij1; 
i,j=1,...,l are given, such that for i≠j, νij is a penalty 
for assignment to the class Кi of object from the 
class Кj , and νjj is a reward for correct recognition of 
the latter. Let also φj, 0.φj1, be the penalties for 
refusal to classify an object from the class Кj. Then, 
the following quality functional of A was offered in 
[6]: 

              2 2{ 0},A Amax ,                        (11) 
where 
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1
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A jj jj
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 


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Let {A} be the above-considered set of 

recognition algorithms. Each algorithm A can be 
encoded by the set of n+m+4 parameters k, ε1,…, εn, 

ε, γ1, …, γm, Δ1, Δ2 (as we have just seen, the 
algorithm is completely characterized by such set). 
In case of the decision rule rA other than 1)-2), the 
latter two parameters can be replaced by the ones 
corresponding to this rA. If the quantities γi=γ(Si) are 
the same for the objects Si of the same class, then A 

can be associated with the smaller set k, ε1,…, εn, ε, 
γ1, …, γl, Δ1, Δ2 of n+l+4 parameters. Thus, the 
above measures (9)-(11) can be considered as 
multivariable functions of these parameters: 

1 1 1 2

                        0 1 2

n n

A A n m( k , ,..., , , ,..., , , ),

n , , .

         


 

The domain T for the latter parameters can be 
naturally defined as follows: k, ε are nonnegative 
integers, ε  k; 1 k n; 0 εp  εmax  p=1,...,n; 0 γi 

1, i=1,...,m; 0< Δ1 Δ1
max,  0< Δ21. 

From the condition 1) and (6) one can derive the 
following formula for Δ1

max (see [6]): 

1
1

m
k

n i

i

max C .


    

Each algorithm from {A} assigns an object from 
the finite set MK to one of l classes or rejects it as 
been unrecognizable. Thus, the measures (9)-(11), 
considered as functions on the set T, take a finite 
number of values. Therefore, the following 
statement holds ([6], Theorem 3): 

 Statement 1. The functions (9)-(11) achieve an 

absolute maximum:    0 1 2p

T Amax , p , ,   in the 

set T. 

The algorithm, corresponding to the point of T 

where the extremum of p

A is achieved, is called the 
extremal algorithm. Thus, the problem of optimal 
algorithms design can be reduced to finding the 
extrema of certain multivariable functions. To solve 
the latter task, various methods (e.g. gradient type 
methods or relaxation methods) can be applied, see 
[7], [8] and references thereafter.  
 

 

4 Fuzzy Classification as the Estimates 

Calculation 
First note that the above quality functionals (or 
algorithm performance measures) take their values 
from 0 to 1. This allows us to define on {A} a fuzzy 
set of “effective algorithms” 

 :A AEf { A}, ,   
where A  is one of the measures (9)-(11). 

Then, assume that the marix Γ (6) contains no 
zero rows (as follows from the previous section, an 
operator rA transforms the zero row to the row 
(Na,....,Na) of the matrix ClA, and no classification 
happens). Consider the matrix 

1
1

1 1

Г Г   
Г

Г  =
Г Г

j ,...,l

pj p ,...,q

pj j p

pj l l

pk k p

k k

( ) ( ( )) ;

( S )
( ) ;

( S )





 

    


 

 

 

i.e. this matrix is obtained from Γ by normalization 
its rows. As follows from Definition 1, the matrix Μ 
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represents a fuzzy classification of the set MK, where 
μpj(Г) is a grade of membership of Sp MK in the 
class Kj. 

Definition 2. The matrix Μ is called a fuzzy 
matrix of estimates.  

The above decision rule for the algorithm A can 
be rewritten as 

i. 1     '

j i( S ) ( S ) , j i;     
(12) 

ii. 2    '

j( S ) , j =1…l,    

for some fixed Δ1
' и Δ2

'; :   0< Δ1
', Δ2

'1. The 
remaining parameters of A are related to the first 
(recognition) stage of the algorithm and we keep 
them unchanged. 

Definition 3.  An algorithm F(A) with the 

following scheme 

      M 
F ( A ) F ( A )R r

F( A )F( A) : I Inf   

is called a fuzzy representation of the algorithm A of 

AEC model. 

Here RF(A) and rF(A) are, respectively, the recognition 
operator and the decision rule (12) for F(A). 

Similarly to the algorithm A, F(A) can be 
encoded with the set of parameters (k, ε1,…, εn, ε, γ1, 
…, γm, Δ1

', Δ2
' ), or with the smaller set (k, ε1,…, εn, 

ε, γ1, …, γl, Δ1
', Δ2

' ) .Thus, if we replace in the set T 
the domains for parameters Δ1 and Δ2 by two 
intervals [0,1] (the domains for Δ1

' and Δ2
'), then the 

Statement 1 can be applied to establish the existence 
of extremal fuzzy algorithm on F(T). 

Thus, the set {F(A)}, generated from {A}, as the 
set of fuzzy classification algorithms has two 
advantages as compared to its counterparts: 
variability in constructing fuzzy classifications and 
existence of extremal algorithms. 

Note that a connection between the algorithms 
based on computations of estimates and the fuzzy 
classification algorithms were indicated in [7] (in 
particular, on the stage related to the use of 
operators RA), but the detailed information is 
missing. 

As to the fuzzy classification algorithms 
considered in Section 2, they can be interpreted as 
algorithms of AEC model. To see this, it can be 
noted first that these fuzzy algorithms comprise two 
stages: the recognition (calculation of class 
memberships) and the classification itself 
(application of decision rule based on the highest 
membership value).     

Further on, take the above algorithm FK. Let MR  
be the training set containing the objects x1,...,xm 
such that each object is identified with its vector 
feature set of length n, and y is an object from MK 

identified with its feature vector of the same length. 
Then, we apply the recognition procedure similar to 
that of for the above-considered algorithms A except 
for some changes. Namely, instead of γ(S1), γ(S2),..., 

γ(Sm) we define the weights γj(xi,y), i=1,...,m; 
j=1,...,l, characterizing the importance of each xi , 
considered as an element of class j, for the 
recognition of y, by the formula: 

2
1

1γ ( , ) μ ( ) ,
|| ||

              

j i ij i

P
i

x y x

y x 

 
 
 
  

 

where μij are calculated according to (2) and P is the 
same as in (3)-(4). Next, from the elements (feature 
sets) of MR, we form a table Tn,l*m,l which contains l 
copies of the above table Tn,m,l. To each row of 
Tn,l*m,l we consequently assign the weights γ1(x1,y),... 
γl (xm,y). Assume that the Eucledian metric is 
selected as our distance function and 

2 2
1 n...      is the radius of the disc centered 

at y which contains exactly K neighbours of y from 
MR. Then, if in the recognition procedure for the 
algorithm A we set k=n, ε=0 (every feature is taken 
into account for the distance measurement), 
ε1=δ1,…, εn=δn, we find the following analog of (5)-
(6) for our case 

       1 1
Г ( ) γ ( , ) : γ ;

K K

j j k jk

k k

y x y
 

  
        (13)

 

where xk are the nearest neighbors of y. The right-
hand side of this equation is exactly the numerator 
in the right-hand side of (3). The decision rule for 
the considered algorithm (denote it as AK) is also 
standard one for the AEC algorithms. Namely, the 
object y is assigned to the j-th class if the following 
condition holds: 

Г ( )  Г ( )>0      1j iy y , j i; i ,...,l.    
As follows from (2) and (13), Гj(y)>0 for all j; so 
each y  MK will be classified. 

Suppose that the values K1 and P are fixed in FK. 
Then the latter can be encoded with the set of 
parameters (n, ε1,…, εn, 0, γ11, …, γ1m,..., γl1,..., γlm). 
The n epsilons characterize the dependence on K in 
the algorithm FK. Assume that the domains for each 
of n+lm parameters are specified. Denote a direct 
product of these domains as TK, and as {AK}  -the set 
of above AEC algorithms with parameters from TK. 
Applying the similar arguments to the ones 
considered  in the proof of Statement 1, we get the 
following results. 
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Statement 2. For any K-fuzzy nearest neighbor 

algorithm there exists a corresponding AEC 

algorithm AK with similar output. For the family 

{AK} there exist extremal (in terms of functions (9)-

(11)) algorithms in the set TK. 
For the denominator in the right-hand side of (3) 

we have, using (13) и (1): 
 

2 2
1 1 11 1

2
1 1 11

1 1μ
|| || || ||

1μ Г ( ).
|| ||

K K l

jk

k k jm m
k k

l K l

jk j

j k jm
k

y x y x

y

y x

   

  

 

 

 



 

 
 

According to Definitions 2-3, the latter relation 
implies the following: 

Statement 3. The algorithm FK is a fuzzy 

representation of the corresponding AEC algorithm 

AK: F(AK)=FK. 

At the end of this section note that the above 
constructions can be applied to get the results 
similar to the Statements 2-3 for the above-
considered nearest prototype algorithm. 

 
 

5 Numerical Experiments 
Here we empirically compare the performance of 
algorithms from the set {F(A)} with that of the 
classifiers considered in Section 1. As a test set, we 
chose the recognition of irises from the known 
Fisher’s Iris data set [11] . This data set has been 
widely used in statistical and machine learning 
studies. In particular, it was used in [10] for testing 
the fuzzy nearest neighbour algorithms. This data 
set represents three subspecies of irises: Iris setosa, 
Iris virginica and Iris versicolor with the four feature 
measurements being sepal length, sepal width, petal 
length and petal width. There are fifty vectors per 
class in this data set (150 vectors in total). The first 
class is linearly separable from the other two. Thus 
to each sample of the set corresponds its feature 
vector of length four. The classifications in [10] 
were obtained using the leave-one-out technique. 
The procedure is to leave one sample out of the 
sample set and classify it using the remaining (149 
for the Fisher’s set) samples as the training set. This 
technique is repeated until all samples in the data set 
have been classified. Alongside with the original Iris 
data set, the set Iris23 containing only the elements 
of the (non-separable) classes two and three (100 in 
total), was also considered in [10]. Also, in the 
fuzzy K- nearest neighbour algorithm the parameter 
P was set to be 2, and the parameters varied were K 

and K1. The recognition results are presented in 

Table 1 containing the numbers of misclassified 
vectors of the Iris set for different values of K and 
K1. 

 

 

K1 

 

K 

 
1 

 
3 

 
5 

 
7 

 
9 

1 6 6 6 6 6 
2 6 6 6 6 6 
3 5 5 5 5 6 
4 5 5 5 5 5 
5 4 4 5 5 5 
6 4 4 4 4 4 
7 4 4 4 4 4 
8 4 4 4 4 4 
9 4 4 4 4 4 

Average 4.7 4.7 4.8 4.8 4.9 

Table 1. Results of fuzzy K-nearest neighbor 
classification. Number of misclassified elements of 
Iris set. 

The leave-one-out technique was also used in 
[10] for performance testing of the fuzzy nearest 
prototype algorithm. On each step, three nearest test 
sample’s neighbors from different classes were 
selected as prototypes for each class. This algorithm 
is much faster compared to the K-nearest neighbor 
classifier. In [10] both the original feature vectors 
and the reduced vectors containing only two 
features (petal length and petal width) were used for 
the classification. The results (which are taken from 
the Table 4 of [10]) in the form of confusion 
matrices are shown in Tables 2 and 3. Their main 
diagonals contain the numbers of correctly classified 
samples from each class and off-diagonal cells – the 
numbers of misclassified ones. 

Classes 1 2 3 
1 50 0 0 
2 0 45 5 
3 0 7 43 

Table 2. Confusion matrix of the nearest prototype 
classifier applied to Iris data (four features). 

Classes 1 2 3 
1 50 0 0 
2 0 48 2 
3 0 4 46 

Table 3. Confusion matrix of the nearest prototype 
classifier applied to Iris data (two features). 
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As we see, in the latter case of incomplete 
feature vector the classification results are better. 
The performance of both the algorithms on the 
Iris23 was on average 20 percent worse than on the 
original data set. This can be explained by 
inseparability between the two classes of Iris23. 

For the algorithms from {F(A)} the parameters 
determining the set TF(A) were selected as follows: 
ε=0; k  {2,3,4}; γ1= …= γ4=1 (all four classes are 
equally important for classification), Δ1

'=0.1, 

Δ2
'=0.6. The average distances between the vectors 

from Iris set are: ε1m=1.8, ε2m=1.2, ε3m=2.95, ε4m=1.2. 
Accordingly, for each i=1,…,4 we assumed that two 
εi-s are uniformly placed on the intervals [0, εim]. 
Thus, 48=3*24 fuzzy classification algorithms 
associated with these parameters were built up. 
They were applied to both Iris and Iris23 data sets. 
As in the above cases of nearest neighbor classifiers, 
the training and the test sets were constructed on the 
leave-one-out basis.  Below we give the results for 
the algorithms F1 and F2 associated with the 
parameters (4, 0.6, 0.4, 1, 0.4, 0, 1,1,1,1, 0.1, 0.6) 
and (2, 1.2, 0.8, 2, 0.8, 0, 1, 1, 1, 1, 0.1, 0.6)   
respectively. In particular, the confusion matrices 
for F1 and F2 applied to the Iris data set are 
contained in Tables 4-5. 

Classes 1 2 3 
1 49 0 1 
2 0 46 4 
3 0 1 49 

Table 4. Confusion matrix for F1 applied to Iris. 

Classes 1 2 3 
1 50 0 0 
2 0 48 2 
3 0 2 48 

Table 5. Confusion matrix for F2 applied to Iris. 

As we see, the performance of F1 and F2 is 
comparable to that of the fuzzy K-nearest classifier 
and exceeds the performance of the fuzzy nearest 
prototype algorithm. The quality measure 0

A  
defined by (9) (the overall sensitivity) takes the 
values 0.96 and 0.97 on F1 and F2 respectively, 
whereas its values on the nearest prototype classifier 
are 0.92 (four feature vectors) and 0.96 (two feature 
vectors). The performance on Iris23 of the 
algorithms from{F(A)} was also worse than on the 
original Iris set; however their performance is 
comparable to that of the fuzzy nearest neighbour 
classifiers. As an example, in Table 6 we give the 
confusion matrices for F1 and F2. 

 
Classes 

F1 F2 

2 3 2 3 

2 46 4 47 3 
3 11 39 7 43 

 Table 6. Confusion matrices for F1 and F2 applied 
to Iris23. 

The performance of F(A) – algorithms with respect 
to k (the number of objects’ features) was studied in 
the following manner. For example, for F1 and F2 

we fixed all parameters except k and formed the 
families {F1} and {F2} containing each three 
algorithms with k=2,3,4. Then we calculated the 
overall sensitivity of the algorithms of each family. 
For Iris23 the results are given in Table 7. 

k 

 
0
A  

 
2 

 
3 

 
4 

{F1} 0.84 0.87 0.85 
{F2} 0.9 0.87 0.87 

Table 7. Overall sensitivity of algorithms of {F1} 

and {F2} families applied to Iris23. 

In all the above tests, the training set (which 
contained all but one elements of Iris or Iris23) 
varied for each classification. In other words, we 
applied the leave-one-out cross-validation to 
evaluate performance of the algorithms. Also, some 
of our tests were performed with a fixed training set. 
Namely, in the Fisher data set, 60 samples (20 per 
each class) were randomly selected to form the set 
MR, and the remaining 90 samples formed the test 
set MK. The parameters of the algorithms from 
{F(A)} were the same as above except for the εi-s; 
for  i=1,2 four values of the latter were selected 
uniformly on the intervals [0, εim], and for i=3,4 
nine  εi-s were selected similarly. Thus 
3888=3*42*92 algorithms were generated. In these 
tests the best results were shown by the algorithms 
F3 and F4 associated with the parameters (4, 1.08, 
0.24, 0.6, 0.12, 0, 1, 1, 1, 1, 0.1, 0.6) and (2, 0.36, 
0.24, 0.3, 0.12, 0, 1, 1, 1, 1, 0.1, 0.6) respectively. In 
both cases the value of (9) was equal to 0.98. A 
direct check showed that in the first case one object 
of class 2 was misclassified into class 3 and, 
conversely, one object of class 3 was assigned to 
class 2. In the second case two objects of class 2 
were misclassified into class 3. To rank these 
algorithms, the measures similar to (10)-(11) which 
take into consideration the weights of classes can be 
applied. 

 
k 

 
0
A  

 
2 

 
3 

 
4 
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{F3} 0.96 0.96 0.98 
{F4} 0.98 0.96 0.97 

Table 8. Overall sensitivity of algorithms of {F3} 

and {F4} families. 

In the same manner as above, we studied the 
performance of the algorithms on a fixed training set 
with respect to k.  For the families {F3} and {F4} 
the corresponding results are contained in Table 8. 

 
 
6 Conclusion 
As we have seen in the Section 4, the fuzzy nearest 
neighbor classifiers considered in the Section 3 can 
be embedded into the framework of AEC model, so 
all results on the latter can be applied to study them.  

The above results have shown that the fuzzy 
representations of AEC algorithms can be 
practically used as classification algorithms. They 
do not require calculation of fuzzy class 
memberships for the elements of training set, and 
they are variable in calculation of fuzzy class 
memberships (or class estimates in terms of the 
AEC model) of objects to classify. In our tests their 
performance on the Iris data set was comparable 
with that of the nearest neighbor classifiers, while 
only few input parameters (k and εi-s) took different 
values. The existence of AEC algorithms, extremal 
in the above sense, is their other advantage. At the 
same time, in the classical AEC model the 
calculation of class estimates according to (5)-(6) 
involves all k

nC  reference subsets Ωk, which may be 
time consuming for large n (size of the objects’ 
feature vectors).  In the latter case, a preliminary 
dimension reduction procedure is desirable. As their 
other disadvantage, we can point out a difficulty in 
establishing ranges for distances between the 
elements of feature vectors; however, it is natural to 
assume that the object to be classified is close to the 
training set. In such case, for finding these ranges, 
the elements of the training set can be used (as it 
was done in the above examples). As to the extremal 
algorithms (in our tests, F3 and F4 were found by 
exhaustive search) determining of their parameters 
(the extremums in TF(A)) by analytical methods is a 
difficult task even when the amount of parameters is 
small, see [7] and references thereafter. The random 
search methods appear to be more practical 
(especially if several quality functionals are used for 
evaluation of algorithms), and their application for 
this purpose can be considered as an interesting 
open issue.  

Also, one may enhance the performance of AEC 
algorithms by taking an arbitrary set of them and 

performing algebraic or logical correction of its 
elements (see [8] for the details). In particular, such 
correction can be applied to the fuzzy AEC 
algorithms. 

As already mentioned in Section 1, in many 
practical applications of the fuzzy classifiers, only 
the calculations of fuzzy class memberships of 
objects to classify, are used. As a decision rule, 
quite complicated methods are often applied. In this 
connection, it is useful to evaluate how different 
algorithms perform these calculations. For this 
purpose, it seems promising to apply the fuzzy 
similarity measures introduced in [4] (it will require 
an additional study of the latter). We plan to address 
this issue in our future work. 
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